Engineering Status Reports

For the past eight years, I have written a required monthly status report to another organization for my NASA contractor work. I have written my accomplishments and planned work in short, concise sentences, usually in numbered list format.

I was then notified by this organization that the writing rules had been changed substantially. The new rules prohibited bullet or numerical list format. Personal pronouns could no longer be used. The sentences must be varied to avoid beginning each with the subject. The writing had to be in paragraph format with three sentences per paragraph, and on and on. There were so many new rules that I did not even read all of them. I wondered if perhaps an English literature major had been given an administrative role and was projecting his or her frustrations by imposing Byzantine writing style rules upon myself and others in this technical community.

So I submitted the following status report, with slight edit changes to avoid disclosing any proprietary information. I refer to myself in third person as the “greybeard.”

The organization responded by instructing me to return to my previous, concise writing style for the status reports, exempting me from the new rules.

And I really did give a presentation to NASA engineers that included a slide about monkeys SLaMS_SCLV201_keynote_revA.ppt

– Tom Irvine

* * *

Significant Accomplishments:

Dynamics Engineering: A Call to Serve! Enlightened were the apprentices as the greybeard mentored them with this presentation at the SLaMS Early Career Community webinar meeting, March 27, calling upon them to share their knowledge and become themselves teachers of the rising generation, underscored with Seneca the Younger’s proverb Docendo discimus – Latin “by teaching, we learn.” Reciprocal altruism of Vervet monkeys! Blind Faults underneath the Los Angeles Basin! Dragons to be launched on towering SpaceX boosters powered by Merlin engines! Thus was the eclectic tutelage of that day.

The raw, ominous Zeus-like power of pyrotechnic shock pulses cutting through rocket joint metal, propagating through modules and threatening sensitive electronic parts mounted on circuit boards – such has been the forlorn of many a NASA engineer. To which challenge did the greybeard prepare shock, structural dynamics, fatigue and statistical energy analysis software and training materials as tools for discerning the energy’s spectral content.

Work Planned:

Gathered will be engineers at the NESC Joint GN&C TDT and L&D TDT F2F Meeting at MSFC – week of April 16, 2018, bringing opportunities of collaboration for the greybeard and his esteemed colleagues. New ideas will arise upon which the greybeard will muse, research and present new papers and methodologies, knowing that if he sees farther than others– it is because he stands on the shoulders of giants.

The response of mechanical components bending and flexing in multi-modes driven by the surging oscillations of pyrotechnic shock waves, the stresses pulling molecules apart, potentially inducing cracks which threaten both component and launch vehicle, for which the greybeard is preparing a presentation for the Aerospace Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 26-28, 2018 – this and more are the planned endeavors for the month of April.


Matlab scripts, the tools for synthesizing acceleration time histories across a series of wavelets, the greybeard’s quest to numerically replicate the damage potential of powerful undulations which could break launch vehicle components and structure, will be conveyed to NASA engineers. Tutorials and slides with examples using the scripts will be provided, enabling these ladies and gentlemen to perform calculations of their own in service of America’s space program.

* * *

Here is the bullet version, with no literary allusions.

Significant Accomplishments:

1. Gave presentation “Dynamics Engineering: A Call to Serve!” to the NASA SLaMS Early Career Community via webinar meeting, March 27. Presentation included references to reciprocal altruism of Vervet monkeys and blind faults underneath the Los Angeles basin.
2. Writing avionics component FEA shock analysis software and tutorials for NASTRAN implementation.

Work Planned:

1. Preparation of structural dynamics & statistical energy analysis software & webinars.
2. Prepare presentation for the Aerospace Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 26-28, 2018. Presentation title is Avionics Component FEA Shock Analysis.
3. Participate in the NESC Joint GN&C TDT and L&D TDT F2F Meeting at MSFC.


1. Webinar audio/visual presentation files.
2. Revised Matlab & Python GUI signal analysis packages with enhanced features.
3. Statistical energy analysis, structural dynamics, vibration fatigue software and tutorial papers.

Nastran Modal Transient & Response Spectrum Analysis for Base Excitation


  • Shock and vibration analysis can be performed either in the frequency or time domain
  • The time domain method requires more computation time but is much better suited for transient and nonstationary excitation
  • Time domain methods are also better for rainflow fatigue cycle counting
  • Students should already have some familiarity with Femap & Nastran
  • They should also be able to perform SRS time history synthesis as shown in previous Vibrationdata units
  • NX Nastran is used as the solver, but the methods should work with other versions
  • Two units for direct shock response spectrum analysis is also included

* * * * * * *

Prerequisite Materials

Webinar Index

Structural Dynamics Webinars

Matlab Vibrationdata GUI

* * * * * * *

Main Presentations:

Nastran Modal Transient Slides:  200_FEA_modal_transient_revI.pptx

Nastran FEA Base Excitation via Response Spectrum:  201_FEA_response_spectrum_revE.pptx

Nastran FEA Base Excitation with Multiple Response Spectrum Inputs:  202_FEA_response_spectrum_multiple_revA.pptx

Nastran FEA Frequency Response Function for Base Input:  203_FEA_frf_revA.pptx

* * * * * * *

Nastran Files

Students should generate their own files, but here are several for reference:






Nastran Acceleration Time History:  srs2000G_accel.nas

* * * * * * *

See also:    Vibrationdata Nastran

– Tom Irvine

Extract Mass & Stiffness Matrices from Nastran model

The punch file method may be used to extract the mass & stiffness matrices from Nastran models.  The format is awkward since zero terms are not stored.  Also the matrices are assumed to be symmetric, and the upper triangular portion above the diagonal is not stored.

Here is a paper from the Middle East Technical University which explains the format:  paper link.

The key is to apply the following command in the *.nas, *.dat, *.bdf or equivalent file:


Here is a sample file for a fixed-free beam, aluminum, 24 inch long, solid cylinder, 0.25 inch diameter, 24 elements:  beam_24e_diam_0p25_punch-000.nas

Its punch file output is:  beam_24e_diam_0p25_punch-000.pch

The fundamental frequency is 11.9 Hz.

If Femap is used, select the punch output with coupled mass.

Here is a C++ program which converts the punch file into full mass & stiffness matrices in ASCII text format:



The mass & stiffness matrices can then be imported to Excel, Matlab or some other program.

– Tom Irvine

Cuba Sonic Attack Analysis


A sound file from the attack on the U.S. Embassy in Cuba has now been made available on the Internet.  I did a spectral analysis of this file using my Matlab GUI scripts.  The sound source is still unknown.  The attacks have caused hearing, cognitive, visual, balance, sleep and other problems for embassy personnel.

Here is a quick look paper: Cuba_sonic_analysis.pdf

Here is the sound file: Cuba_sonic.mp3   Turn up the speaker volume to hear the sound.

– Tom Irvine

Fatigue Analysis Webinars


This is a work-in-progress…

I am creating a series of webinars with Matlab exercises for fatigue analysis

Matlab script: Vibrationdata Signal Analysis Package

Here are the slides:

Unit 1  Fatigue Introduction

Unit 2  Fracture

Unit 3  Sine Vibration

Unit 4  Random Vibration

Unit 5  Rainflow Cycle Counting, Time Domain

Unit 6  Sine Sweep Vibration

Unit 7   Synthesizing a Time History to Satisfy a PSD Specification

Unit 8  Drop & Classical Shock  & Video Half-Sine SRS Animation

Unit 9  Seismic & Pyrotechnic Shock & Video Delta 4 Shock Events

Unit 10  SRS Synthesis

Unit 11  Vibration Response Spectrum

Unit 12  Rainflow Fatigue, Spectral Methods, Fatigue Damage Spectrum

Unit 13  Modifying Spectral Fatigue Methods for S-N Curves with MIL-HDBK-5J Coefficients

Unit 14a  Enveloping Nonstationary Vibration via Fatigue Damage Spectra

Unit 14b  Enveloping Nonstationary Vibration, Batch Mode for Multiple Inputs

Unit 15  Using Fatigue to Compare Sine and Random Environments

Unit 16  Sine-on-random Conversion to a PSD via Fatigue Damage Spectra

Unit 17  Non-Gaussian Random Fatigue and Peak Response

Unit 18   Acoustic Fatigue

Unit 19  Shock Fatigue

Unit 20  Fatigue Damage including Mean Stress

Unit 21  Electronic Circuit Board Fatigue, Part 1

Unit 22  Electronic Circuit Board Fatigue, Part 2

Unit 23  Time-Level Equivalence

Unit 24  Multiaxis Fatigue, Constant Amplitude Loading

Unit 25  Multiaxis Fatigue, Stress Ratio Methods

Unit 26  Multiaxis Fatigue, Variable Amplitude Loading

Unit 27  Airbus Fatigue Manual

More later…

– Tom Irvine

Waterfall SRS, 1940 El Centro Quake




The top figure is the time history from the El Centro earthquake, North-South horizontal component.  The middle is the corresponding Waterfall SRS with 4 second segments and with 50% overlap.  The bottom is the spectrogram.

The Waterfall SRS is calculated by first taking the complete response time history for each natural frequency of interest.  Then the time history for each is divided into segments.  Finally, the shock response spectrum (SRS) is taken for each natural frequency and for each segment, by taking the peak positive and peak negative responses.

The Waterfall SRS function is given in:

Matlab script: Vibrationdata Signal Analysis Package

>> vibrationdata > Time History > Shock Response Spectrum, Various > Waterfall SRS

See also:  El Centro Earthquake

– Tom Irvine

Tom’s Video & Animation Files

Another work-in-progress…

Step 1: Download a video file.
Step 2: Play using VLC media player.

* * * * *

Launch Vehicles

Delta 4 Heavy Launch Vehicle Shock Events

Pegasus Launch Vehicle

Linear Shaped Charge Test

* * * * *


Chinook Ground Resonance

* * * * *

Fixed Wing Aircraft

MD80 Tail Failure

Boeing 747 Wind Tunnel

C-5 Tail Wind Tunnel

Twin Commanche

* * * * *

Automotive & Transportation

Triple Trailer Oscillation

* * * * *

Shock & Vibration Testing

Generator Seismic Shaker Test

* * * * *

Fluid Systems

Pool Slosh 1

Pool Slosh 2

* * * * *


Half-Sine SRS Animation

Multi-axis Shock & Vibration Testing

Equipment must be designed and tested to withstand shock and vibration.  Ideally, all equipment would be tested on a shaker table with six-degree-of-freedom control (three translations and three rotations).  Such tables and control systems exist but are very expensive.  Furthermore, any multi-axis testing requires careful consideration of phase angles between the six degrees.

Another option is to test equipment on a triaxial table where the three translations are controlled, and the three rotational degrees are constrained to zero motion.  Testing on a biaxial table is yet another choice.

The most common test method, however, remains testing in each of three orthogonal axes, one axis at a time, on a single-axis shaker.  This is simplest and least expensive method.

The question arises “Should the acceleration level be increased for the case of single-axis testing?”

There is a tacit understanding that aerospace and military equipment test levels already have a sufficient uncertainty margin or safety factor so that the levels can be used without further increase.  In other words, the specifications are already intended for single-axis testing.  In many cases, a uniform level is used in each axis which is the maximum envelope of the maximum expected levels in the three axes plus some margin.

* * *

The standards which address testing equipment for earthquakes take a different approach. The following descriptions are taken from five common standards.

Only KTA 2201.4 gives a scaling formula.  This is also the only standard from the five samples which may be freely downloaded.

* * *

IEEE 344-2013  Standard for Seismic Qualification of Equipment for Nuclear Power Generating Stations

8.6.6 Multiaxis tests

Seismic ground motion occurs simultaneously in all directions in a random fashion. However, for test purposes, single-axis, biaxial, and triaxial tests are allowed. If single-axis or biaxial tests are used to simulate the 3D environment, they should be applied in a conservative manner to account for the absence of input motion in the other orthogonal direction(s). One factor to be considered is the 3D characteristics of the input motion. Other factors are the dynamic characteristics of the equipment, flexible or rigid, and the
degree of spatial cross-coupling response. Single and biaxial tests should be applied to produce adequate levels of excitation to equipment where cross coupling is significant and yet minimize the level of overtesting where the cross coupling is not significant.

* * *

KTA 2201.4   Design of Nuclear Power Plants against Seismic Events, Part 4: Components

This document may be freely downloaded: link

See paragraphs

5.3.3 Excitation Axes Simultaneity of excitation directions

Simultaneous three-axis testing is preferred. But single-axis testing can be substituted by testing in each of three axes sequentially.

The standard shows, for example, that the uniform single-axis level should be the “square root of the sum of the squares” of the three orthogonal installation site levels.

* * *

IEC 980 Recommended practices for seismic qualification of electrical equipment of the safety system for nuclear generating stations

6.2.9 Qualification test method General

As is well known, seismic excitation occurs simultaneously in all directions in a random way. According to this point of view, the test input motion should consist of three mutually independent waveforms applied simultaneously along the three orthogonal axes of the equipment.

However, taking into account that three axial testing installations are rare and that triaxial testing is desirable when significant coupling exists simultaneously between the two preferred horizontal axis of the specimens, biaxial testing with multifrequency independent input motion in the horizontal and vertical direction is an acceptable test.

Tests shall be performed according to 6.3.2 and, in terms of total duration and fatigue induced, are intended to become conservative.

In some cases, single axis tests with multiple, or single frequency excitation are also acceptable methods of test if properly justified considering the effect of coupling between axes.

* * *

Telcordia GR-63-CORE

Assumes single-axis testing.  The base input time history is specified in the standard.

* * *

IEEE 693-2005 – IEEE Recommended Practice for Seismic Design of Substations

paragraph 4.9

The shaker table shall be biaxial with triaxial preferred.

* * *

See also:

Seismic Test & Analysis Webinars

Hypersphere SRS


– Tom Irvine

Webinar Index

Here is a listing of the webinars and related materials.

Matlab script: Vibrationdata Signal Analysis Package

1. Natural Frequencies

2. Sine Vibration

3. Sine Sweep Vibration

4. Random Vibration

5. Fourier transforms

6. Leakage Error, Hanning Window

7. FFTs

8. Waterfall FFT

9. White Noise FFT

10. Sample Rate & Aliasing

11. Power Spectral Density

12. Power Spectral Density Functions of Measured Data

13. SDOF Response to Power Spectral Density Base Input

14. Synthesizing a Time History to Satisfy a PSD Specification

15. SDOF Response to Base Input in the Frequency Domain

16. Vibration Response Spectrum

17. SDOF Response to Applied Force

18. Force Vibration Response Spectrum

19. Digital Filtering

20. Digital Filtering, Part 2

21. Integration & Differentiation of Time Histories

22. Integration and Differentiation of Time Histories & Spectral Functions

23. Classical Shock Pulse

24. Seismic Shock

25. Pyrotechnic Shock

26. Pyrotechnic Shock, part 2

27. SRS Synthesis

28. Multi-degree-of-freedom SRS

29. Stress-Velocity Relationship

30. Rectangular Plate Shock & Vibration

31. Rectangular & Circular Plate Shock & Vibration

32. Electronic Circuit Board Fatigue

33. Rainflow Fatigue

34. Rainflow Fatigue for Continuous Beams

35. Using Fatigue to Compare Sine and Random Environments

36. Non-Gaussian Random Fatigue and Peak Response

37. Acoustic Fatigue

38. Electronic Circuit Board Fatigue Part 2

39. Sine-on-Random Vibration

40. Shock Fatigue

41. PSD Special Topics

42. Shock Special Topics

43. Two-degree-of-freedom System, Two-stage Isolation

44. Sine Filtering

45. Two-degree-of-freedom System with Rotation and Translation

46. Two-degree-of-freedom System with Multi-point Enforced Motion

47. Shock Response Spectrum Synthesis, Special Topics

Seismic Test & Analysis Webinars

Structural Dynamics Webinars

Fatigue Webinars

Circuit Board Shock & Vibration Analysis

HALT/HASS for Product Reliability

More later. . .

– Tom Irvine