Honeycomb Sandwich Panels

Honeycomb-Sandwich-Panels-Marketimg_20171107_170159_750x750

Honeycomb sandwich structures are designed to have a high stiffness-to-mass ratio.   The stiff, strong face sheets carry the bending loads, while the core resists shear loads.

The face sheets are typically made from aluminum or carbon fiber with epoxy resin.

The honeycomb core material is usually aluminum for aerospace applications.   Other core materials include Nomex aramid or Kevlar para-aramid fiber sheets saturated with a phenolic resin.  In addition, closed cell foams such as Rohacell are substituted for honeycomb in some sandwich panel designs.

* * * *

According to Klos, Robinson and Buehrle…

Panels constructed from face sheets laminated to a honeycomb core are being incorporated into the design of modern aircraft fuselage and trim treatments. The mechanical properties of these panels offer a distinct advantage in weight over other commonly used construction materials.

The strength to weight ratio of honeycomb composite panels is high in comparison to rib stiffened aluminum panels used in previous generations of aircraft. However, the high stiffness and low weight can result in supersonic wave propagation at relatively low frequencies, which adversely affects the acoustical performance at these frequencies.

Poor acoustical performance of these types of structures can increase the cabin noise levels to which the passengers and crew are exposed.

* * * *

Here are some references:

Natural Frequencies of a Honeycomb Sandwich Plate:  honeyG.pdf

Honeycomb Sandwich Panel Damping:  honeycomb_sandwich_damping.pdf

Honeycomb Sandwich Ring Mode Frequency:  honeycomb_sandwich_ring_frequency.pdf

Hexcel Honeycomb Sandwich technical information:  honeycomb_design.pdf

Sound Transmission through a Curved Honeycomb Composite Panel:  ST_curved_honeycomb_panel.pdf

More later…

– Tom Irvine

2 thoughts on “Honeycomb Sandwich Panels

  1. Pingback: Vibroacoustics/Statistical Energy Analysis | Vibrationdata

  2. Pingback: Damping References | Vibrationdata

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s