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Two-degree-of-freedom System 
 
Consider the damped system in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                      Figure 1.  Two-degree-of-freedom System 
 
 

Structural dynamics systems can be represented in terms of mass, damping and 
stiffness matrices.  Each of these matrices may be coupled depending on the model 
complexity, degrees-of-freedom, etc.   The mass and stiffness matrices in the 
assembled equation of motion may be uncoupled using the normal modes for the 
undamped system.  This approach gives real natural frequencies and real mode shapes. 

Damping effects can be included in forced response analyses by implicitly assuming 
that the damping matrix can be diagonalized into modal damping coefficients by the 
undamped modes.   But systems with dashpots in general have damping matrices 
which cannot be uncoupled in this manner. 
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The state-space method is useful for modal and forced response analysis of systems 
with discrete dashpot damping.  This approach yields complex natural frequencies and 
mode shapes, with real and imaginary components. 

 
Derivation of Equations of Motion 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.  Free-body Diagrams 

 

Determine the equation of motion for mass 2. 

 

 
         ∑ F = m2 ü2                                                               (1) 

 
       m2 ü2 = p2(t) + k2 (u1 − u2) + c2 (u̇1 − u̇2) (2) 

 
           m2 ü2 + c2(u̇2 − u̇1) + k2(u2 − u1) = p2(t)                                                      (3) 
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Determine the equation of motion for mass 1. 

 
        ∑ F = m1ü1  (4) 

 
m1 ü1 = p1(t) − k1u1  − k2 (u1 − u2) − c1u̇1  − c1(u̇1 − u̇2) (5) 

 
         m1 ü1  + c1u̇1 + c2(u̇1 − u̇2)+ k1u1+ k2(u1 − u2)  = p1(t)                                            (6) 

 
          m1 ü1  + (c1 + c2)u̇1 − c2u̇2  + (k1 + k2)u1 -k2u2 = p2(t)                                          (7) 

 
 

The equations of motion in matrix form are 
 

[
m1 0
0 m2

] [
ü1
ü2
] + [

c1 + c2 −c2
−c2 c2

] [
u̇1
u̇2
] + [

k1 + k2 −k2
−k2 k2

] [
u1
u2
] = [

p1(t)

p2(t)
] (8)    

 
 
 
The equations can be represented as 
 

Mü + Cu̇ + Ku = P                                                                                               (9) 
 
where 
 
    

M = [
m1 0
0 m2

] ,  C = [
c1 + c2 −c2
−c2 c2

] ,   K = [
k1 + k2 −k2
−k2 k2

] 

 

                          u = [
u1
u2
] ,  P = [

p1(t)

p2(t)
]                                                                                                 

 
 

The dimensions of the mass, damping and stiffness matrices are (N x N), where N is the 
number of degrees-of-freedom.  N = 2 for the example in this paper. 
 
Let 
 

z(t) = {
u(t)

v(t)
}  ,     ż(t) = {

v(t)

v̇(t)
}                                                                          (10) 
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The equations can be expressed in state-space format as 

 

[
I 0
0 M

] [
v
v̇
] = [

0 I
−K −C

] [
u
v
] + [

0
p(t)

]                                                               (11)     

 
 
Premultiply the second row by M−1 . 
 
 

[
I 0
0 M−1 M

] [
v
v̇
] = [

0 I
−M−1 K −M−1 C

] [
u
v
] = [

0
M−1 p(t)

] 
                                                                

(12)     
 

 
 

[
I 0
0 I

] [
v
v̇
] = [

0 I
−M−1 K −M−1 C

] [
u
v
] + [

0
M−1 p(t)

] 
                                                                

(13)     
 

 

Let 

 
A = [

0 I
−M−1 K −M−1 C

]   ,   P̄ = [
0

M−1 p(t)
] (14) 

 

The A matrix dimension is (2N x 2N). 

The A and B matrices are not positive definite.  The eigenvalues and vectors are either 

real or complex, with real and imaginary components.  This implies that the modes are 

not synchronous.  There is a phase lag such that different degrees-of-freedom do not 

simultaneously reach their corresponding peaks and valleys. 

The free vibration problem is 

I ż = A z                                                                                  (15) 
 

Equation (14) represents a homogeneous set of ordinary differential equations with 

constant coefficients.  The solution can be expressed as 

z(t) = ψ exp(λt) (16)   

ż(t) = λψ exp(λt) (17)                                                                                             

 

where λ is a scalar and ψ is a 2N vector 
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The corresponding generalized eigenvector problem is  

 

λ I ψ exp(λt) + A ψ exp(λt) = 0                                                                       (18)                                                                                               
 

[λ I − A ]ψ = 0                                                                                           (19)                                                                                               
 

The solution of this problem yields a set of 2N eigenvalues,  i=1, 2, … , 2N. 

It also gives corresponding eigenvectors Ψi  ,  i=1, 2, … , 2N. 

The eigenvalues are found via 

 

det [λ I − A] = 0                                                                                           (20)                                                                                               
 

The eigenvalues must either be real or complex conjugate pairs because the coefficient 

matrices are real.   Real eigenvalues indicate very high damping leading to overdamped 

modes.  Furthermore, eigenvalues with complex conjugate pairs have corresponding 

eigenvectors which are complex conjugates. 

 

The eigenvectors can be normalized with respect to the A matrix such that 

 Ψ TA Ψ = λ̂       diagonal matrix of eigenvalues (21) 

 

Frequency Response Function Derivation 

The non-homogeneous state-space equation can be expressed as 

I z̄̇ = A z̄ + P̄                                                                                                   (22) 
 

Now define a generalize coordinate η(t) such that 

z̄ = ψη̄                                                                                                              (23) 

I ψη̄̇ = A ψη̄+ P̄                                                                                              (24) 
 

Premultiply by the inverse of the eigenvector matrix.  

   ψ−1 I ψ η̄̇  =    ψ−1A ψ η̄ +  ψ−1 P̄                                                                     (25) 
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The uncoupled system equation is 

I η̄̇  =  λ̂ η̄ +  ψ−1 P̄                                                                            (26) 
 

I η̄̇  −  λ̂ η̄ =  ψ−1 P̄                                                                            (27) 

 

For a individual coordinate r, 
 

   η̇r  − λrηr = ( ψ
−1 )r P̄                                                                              (28) 

 
Take the Laplace transform 
 

 
   L{η̇r  − λrηr} =  L{( ψ

−1 )r P̄}                                                                             (29) 
 

sη̂r(s) − ηr(0) − λrη̂r(s) =   ( ψ
−1 )r P̂(s)                                                           (30) 

 
 

     [s  − λr]η̂r(s) + ηr(0) = ( ψ−1 )r P̂(s)                                                                 (31) 
 
 

For zero initial conditions, 
 

 
[s  − λr] η̂r(s) =  ( ψ

−1 )r P̂(s)                                                                               (32) 
 

 

η̂r(s) = 
1

[s  − λr]
( ψ−1 )r P̂(s) (33) 

η̂(s) =  ∑
1

[s  − λr]
( ψ−1 )r P̂(s)  

2N

r=1

 (34) 

 
                                                                          
Change from the Laplace to the frequency domain with s = jω. 
 
 

η̂(ω) =  ∑
1

[ jω  − λr]
( ψ−1 )r P̂(ω)  

2N

r=1

 (35) 

 
 



 

7 
 

Recall 
z̄ = ψη̄                                                                                                              (36) 

 

The Fourier transform equivalent for the frequency domain is 

Ẑ(ω) = ψ η̂(ω)                                                                                              (37) 

 

Ẑ(ω) =

{
 

 
U1(ω)

U2(ω)

V1(ω)

V2(ω)}
 

 
=∑

1

[jω  − λr]
 ψ  ψr

−1 P̂(ω) 

2N

r=1

 (38) 

 

 

Ui(ω) =∑
1

[jω  − λr]
 ψir  ψr

−1  [
0

M−1 P(ω)
] ,   i = 1: N

2N

r=1

 

  
  

(39) 

 

For N=2,  

Ui(ω) =∑
1

[jω  − λr]
 ψir  ψr

−1 [

0
0

M−1 [
P1(ω)

P2(ω)
]
]  ,   i = 1,2

4

r=1

 

  
  

(40) 

Frequency response functions can be derived from the above equation. 
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APPENDIX A 

 

Example 

 

 

m1 2.0 lbm 

m2 1.0 lbm 

c1 0.2788 lbf sec/in 

c2 0.161 lbf sec/in  

k1 1500 lbf/in 

k2 1000 lbf/in 

 

                                                                                          Figure A-1. 

 

The system in Figure A-1 is analyzed via a Matlab script.  Note that the mass matrix is 

divided by 386 inside the Matlab script to convert lbm to lbf sec^2/in.  

 

Mass Matrix  
   5.181e-03    0.000e+00  
   0.000e+00    2.591e-03  
 

Damping Coefficient Matrix  
 
    4.398e-01    -1.610e-01  
   -1.610e-01    1.610e-01  
 

Stiffness Matrix  
 
    2.500e+03    -1.000e+03  
   -1.000e+03    1.000e+03 
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A = 
 
    0.4398   -0.1610    0.0052         0 
   -0.1610    0.1610         0    0.0026 
    0.0052         0         0         0 
         0    0.0026         0         0 
 

 

Eigenvalues 
 
 Complex:   -14.13 +   -396.1i   Mag:    396.3 rad/sec  f=   63.08 Hz 
 Complex:   -14.13 +    396.1i   Mag:    396.3 rad/sec  f=   63.08 Hz 
 Complex:   -59.38 +   -841.4i   Mag:    843.5 rad/sec  f=   134.2 Hz 
 Complex:   -59.38 +    841.4i   Mag:    843.5 rad/sec  f=   134.2 Hz 
 

 
 lambda1 =     -14.13 +   -396.1i   
 lambda2 =     -14.13 +    396.1i   
 lambda3 =     -59.38 +   -841.4i   
 lambda4 =     -59.38 +    841.4i   
 

Eigenvectors 1 & 2  

 

    -5.25e-05 +1.29e-03i     -5.25e-05 -1.29e-03i   

    -7.74e-05 +2.17e-03i     -7.74e-05 -2.17e-03i   

    5.10e-01 +2.62e-03i     5.10e-01 -2.62e-03i   

    8.60e-01 +0.00e+00i     8.60e-01 +0.00e+00i   

  

 Eigenvectors 3 & 4  

 

     4.55e-05 -7.63e-04i     4.55e-05 +7.63e-04i   

    -6.38e-05 +9.04e-04i     -6.38e-05 -9.04e-04i   

    -6.45e-01 +7.05e-03i     -6.45e-01 -7.05e-03i   

    7.64e-01 +0.00e+00i     7.64e-01 +0.00e+00i   
 

 

  



 

10 
 

 

 ψ−1A ψ 

 

= [

−14.13 +   −396.1i  0 0 0

0 −14.13 +     396.1i 0 0
0 0 −59.38 +   −841.4i 0
0 0 0 −59.38 +     841.4i  

]  

= λ̂   along diagonal 

 

 

 

 

Figure A-2. 
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Figure A-3. 
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Figure A-4. 


