Optimized PSD Envelope for Multiple Accelerometer Time Histories

Prerequisite Reference Papers

David O. Smallwood, An Improved Recursive Formula for Calculating Shock Response Spectra, Shock and Vibration Bulletin, No. 51, May 1981.  DS_SRS1.pdf

Rainflow Counting Tutorial

Fatigue Damage Spectrum, Time Domain

Fatigue Damage Spectrum

Dirlik Method for PSDs

Optimized PSD FDS Nonstationary 

* * *

Main Paper

Consider a component mounted on a structure where the base input is measured by an adjacent accelerometer on the structure. An envelope power spectral density (PSD) is needed so that component design and test levels can be derived, with the appropriate added statistical uncertainty margin.

Assume that the base input has been measured over a series of accelerometer time histories. This could be the case for an automobile driven at different speeds over different road conditions, for example.

The envelope PSD can be derived using fatigue damage spectra as shown in:  FDS_PSD_multiple.pdf

The C++ programs are:

fds_multiple.cpp
fds_multiple.exe
fds_multiple_envelope.cpp
fds_multiple_envelope.exe

* * *

Here is an alternate program that allows for repetition for a given time history file.  This is useful, for example, if a short time duration was measured to represent a longer service duration.

fds_multiple_alt.cpp
fds_multiple_alt.exe

Now assume that there are three measured acceleration time histories where the repetition number is 10, 50 and 100, respectively.

The input file format would be:

time_history_1.txt 10
time_history_2.txt 50
time_history_3.txt 100

Substitute your own file names and multipliers accordingly.

* * *

– Tom Irvine

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s