Using Random Vibration Testing to Cover Shock Requirements

Aerospace and military components must be designed and tested to withstand shock and vibration environments.

Some of this testing occurs as qualification, whereby a sample component is tested to levels much higher than those which it would otherwise encounter in the field. This is done to verify the design.

Now consider a launch vehicle component which must withstand random vibration and pyrotechnic shock. The random vibration specification is in the form of a power spectral density (PSD). The shock requirement is a shock response spectrum (SRS).

Pyrotechnic-type SRS tests are often more difficult to control and thus more expensive than shaker table PSD tests. Furthermore, some lower and even mid-level SRS specifications may not have the true damage potential to justify shock testing.

The fatigue damage spectrum (FDS) can be used to further determine whether the PSD specification covers the SRS requirement.  If so, then shock testing can be omitted in some cases.

Here is a paper: random_cover_shock.pdf

* * *

See also:

Shock Severity Limits for Electronic Components

Rainflow Cycle Counting

Fatigue Damage Spectrum

Matlab Mex – fds_main script

SDOF Response to an acceleration PSD Base Input – VRS script with FDS option

Matlab script: Vibrationdata Signal Analysis Package  – SRS damped sine time history synthesis function

Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum

* * *

– Tom Irvine

3 thoughts on “Using Random Vibration Testing to Cover Shock Requirements

  1. Pingback: Shock Severity Limits for Electronic Components | Vibrationdata

  2. Pingback: Direct Fatigue Damage Spectrum Calculation for a Shock Response Spectrum | Vibrationdata

  3. Pingback: Webinar 40 Shock Fatigue | Vibrationdata

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s